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iv Índice general

3.2.2. Impedancias del suelo por Veletsos & Meek [3] . . . . . . . 28
3.2.3. Impedancias del suelo: Veletsos & Meek [3] vs Verbic &

Veletsos [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3. Cimentaciones superficiales de masa despreciable . . . . . . . . . . 33

3.3.0.1. Amortiguamiento Viscoso . . . . . . . . . . . . . 33
3.3.0.2. Discusión del espectro de respuesta en base ŕıgida 39
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4.2.2. Parámetros adimensionales . . . . . . . . . . . . . . . . . . 58
4.2.3. Elección del rango de frecuencias . . . . . . . . . . . . . . 59
4.2.4. Criterio de normalización . . . . . . . . . . . . . . . . . . . 60
4.2.5. Limitaciones de la malla . . . . . . . . . . . . . . . . . . . 62
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amortiguamiento ξ . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10. Espectro de respuesta para σ = 3, para el caso de cimentación
superficial, considerando amortiguamiento histerético de la estructura 42
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102). s/d = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7. Impedancias de un grupo de 3×3 pilotes en suelo flexible (Ep/Es =
103). s/d = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8. Impedancias de un grupo de 3×3 pilotes en suelo ŕıgido (Ep/Es =
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Caṕıtulo 1

Introducción

1.1. Antecedentes

Este Trabajo Fin de Máster se integra en la ĺınea de trabajo principal que
se desarrolla en la División de Mecánica de Medios Continuos y Estructuras del
Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en In-
genieŕıa, a la que pertenecen los tutores, y que tiene por objetivo el desarrollo
de modelos numéricos que permitan determinar la respuesta dinámica de estruc-
turas de diferente tipoloǵıa. Se trata de modelos que posibilitan el estudio de
desplazamientos, deformaciones, esfuerzos y tensiones en cualquier punto de la
estructura ante cargas de cualquier tipo variables en el tiempo y que, por tanto,
son magnitudes que también poseen dependencia temporal.

Es posible, aśı, obtener de forma precisa la respuesta dinámica de una estruc-
tura ante, por ejemplo, las solicitaciones producidas por una máquina anclada a
la misma o en sus proximidades, las cargas dinámicas producidas por el viento o
las vibraciones que se transmiten desde el terreno a través del cimiento durante
el desarrollo de un evento de carácter śısmico. Este último tipo de problema, de
especial interés en el diseño de estructuras civiles singulares (puentes, presas, edi-
ficios altos, etc.), presenta algunas dificultades añadidas para su tratamiento. Los
modelos a desarrollar para el estudio śısmico de estructuras deben tener en cuen-
ta aspectos tales como el carácter propagatorio de la excitación y el ángulo de
incidencia de las ondas śısmicas sobre el emplazamiento, los efectos de distorsión
del campo incidente asociados a la topograf́ıa, estratigraf́ıa o la propia geometŕıa
del cimiento y, en general, cualquier aspecto relacionado con la interacción entre
la estructura analizada y el terreno de cimentación. Considerar con rigor estos
efectos requiere de la utilización de modelos directos que tengan en cuenta la
estructura y el terreno y que formulen adecuadamente la interacción mutua. Su
principal inconveniente es el elevado número de grados de libertad que implican,
de ah́ı que estos modelos directos, hasta el desarrollo reciente de computadores de
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grandes prestaciones accesibles, tuviesen un campo de aplicación muy restringi-
do. La metodoloǵıa desarrollada entonces (ampliamente utilizada actualmente en
algunos problemas) se basa en la aplicación de técnicas de subestructuración que
permitan el análisis dinámico teniendo en cuenta los fenómenos de interacción de
forma simplificada [1].

Los modelos formulados en la División de Mecánica de Medios Continuos y Es-
tructuras se enmarcan dentro de la categoŕıa de Modelos Directos, siendo aplicados
a problemas donde coexisten medios de diferentes caracteŕısticas y comportamien-
tos (suelo, estructura, agua, sedimentos) sometidos a solicitaciones śısmicas. Ante
este tipo de solicitaciones, estos medios interactúan entre śı formando un sis-
tema acoplado en el que ninguna de las partes puede ser estudiada aisladamente.
Además, existe una dificultad adicional asociada al hecho de que algunas de es-
tas regiones pueden ser muy extensas (o prácticamente infinitas, como el suelo).
Este hecho dificulta el estudio, ya que, a diferencia del análisis estático, en el ca-
so dinámico acciones de origen muy alejado de un punto pueden tener una gran
influencia sobre los movimientos y tensiones a que éste se ve sometido.

El método utilizado para el tratamiento numérico de las ecuaciones del pro-
blema en estos modelos ha sido, fundamentalmente, el Método de los Elementos
de Contorno. Teniendo en cuenta las caracteŕısticas del problema a resolver y
sus condicionantes, el Método de los Elementos de Contorno es, sin duda, la op-
ción más adecuada [4]. Este Método permite el tratamiento sencillo de regiones
de geometŕıa infinita o semi-infinita en problemas dinámicos, ya que verifica de
forma impĺıcita las condiciones de radiación. Asimismo, la incorporación de un
tren de ondas como solicitación en el terreno simulando el evento śısmico es tam-
bién muy natural. En este sentido, y con anterioridad al desarrollo del presente
Trabajo Fin de Máster, ya se hab́ıa desarrollado un modelo numérico acoplado
que, haciendo uso del Método de Elementos de Contorno, permite el estudio de
la respuesta śısmica de estructuras continuas, habiendo sido aplicado con éxito al
estudio śısmico de presas bóveda [5–7]. En este modelo, todos los dominios impli-
cados (terreno, presa, agua y sedimentos de fondo) son discretizados haciendo uso
del Método de Elementos de Contorno como regiones continuas sin simplificación
dimensional o de comportamiento alguna. La interacción dinámica entre dichas
regiones se formula de manera rigurosa (equilibrio y compatibilidad) dando lugar
a un sistema de ecuaciones donde las incógnitas son desplazamientos o tensiones
en el contorno de dichas regiones. Los desplazamientos y tensiones en el interior
de estas regiones pueden obtenerse de forma muy sencilla a través de los valores
calculados en el contorno. La solicitación consiste en un tren de ondas śısmicas
planas de diferente tipo (P, SH, SV y ondas de Rayleigh) que, partiendo desde el
infinito, incide en el lugar de emplazamiento de la estructura.

Otro caso de interés para los miembros de la División en los últimos años ha
sido el análisis de la respuesta dinámica de estructuras de edificación cimentadas
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mediante pilotes. Este problema tiene gran interés, principalmente, por dos mo-
tivos básicos: el gran número de edificaciones de estas caracteŕısticas en zonas de
peligrosidad śısmica y la necesidad, aún hoy en d́ıa, de alcanzar una mayor y mejor
comprensión de los fenómenos implicados en la respuesta dinámica de estructuras
de estas caracteŕısticas. En este sentido, se ha desarrollado e implementado un
modelo acoplado de Elementos de Contorno y Elementos Finitos (MEC-MEF)
tridimensional armónico que aprovecha las ventajas de cada metodoloǵıa para el
análisis dinámico directo de este tipo de estructuras.

En cuanto a la respuesta de la superestructura, los efectos de interacción suelo-
estructura (SSI) en edificios han sido objeto de estudio durante más de treinta
años. Los trabajos pioneros en este área, que investigaron la influencia de la fle-
xibilidad del suelo en el comportamiento dinámico de estructuras a cortante de
una sola altura, fueron presentados por Parmelee [8], Perelman et al [9], Parmelee
et al [10] y Sarrazin et al [11]. A partir de estos trabajos, Veletsos y Meek [3],
y Bielak [12], propusieron, por separado, aproximaciones basadas en modelos
monodimensionales dirigidos a ofrecer pautas para el diseño de estructuras. Estos
autores utilizaron las funciones de impedancia que estaban disponibles en aquel
momento, y que correspond́ıan a placas ŕıgidas superficiales de forma circular.
Una década más tarde, Wolf presentó una recopilación de problemas de interac-
ción suelo-estructura en su libro [13]. Algunos trabajos posteriores ampliaron estos
estudios y analizaron la influencia del grado de embebimiento de la cimentación,
y de los fenómenos de interacción cinemática (e.g. [14–17]).

Es conocida la importancia que los fenómenos de interacción suelo-estructura
tienen en el comportamiento dinámico de edificios. La evaluación correcta de la
respuesta dinámica de estas y otras estructuras, requiere del desarrollo de modelos
que incorporen de forma rigurosa la interacción entre la estructura y el terreno
en el que se cimienta. Dichos fenómenos de interacción dependen de factores tales
como: el tiempo de cimentación, su geometŕıa y grado de enterramiento, el tipo
de suelo y su estratigraf́ıa aśı como las caracteŕısticas de la estructura.

En este Trabajo de Fin de Máster, se inicia el desarrollo y estudio de un
modelo simple de interacción suelo-estructura en el dominio de la frecuencia, que
permitirá evaluar la influencia de estos factores en la respuesta de estructuras
de edificación frente a cargas de origen śısmico. En este modelo, la estructura
se considera un sistema discreto con un número finito de grados de libertad, el
conjunto terreno-cimentación se representará a través de resortes y amortiguadores
equivalentes cuyas propiedades dependen de la frecuencia de excitación y, por
último, la solicitación (onda śısmica) a través de sus efectos (desplazamiento y
giro) en la base de la estructura. El modelo permitirá cuantificar el efecto de
la interacción sobre variables de la estructura tales como su frecuencia natural,
esfuerzos y amortiguamiento.

Los valores de las funciones de impedancia dinámica del suelo, aśı como los fac-
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tores de interacción cinemática, se han obtenido utilizando el código que resultó de
la implementación de un modelo que ya hab́ıa sido desarrollado en el seno de la
División de Mecánica de Medios Continuos y Estructuras del Instituto Universi-
tario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingenieŕıa. Se trata de
un modelo acoplado de Elementos de Contorno y Elementos Finitos (MEC-MEF)
tridimensional armónico que aprovecha las ventajas de cada metodoloǵıa para el
análisis dinámico directo de estructuras de edificación cimentadas mediante pi-
lotes. Este modelo cuenta con las ventajas del Método de Elementos de Contorno
para representar el terreno donde se asienta la edificación, es decir, su carácter
de medio semi-infinito aśı como la presencia de ondas śısmicas excitadoras, y la
simplificación que supone modelar vigas, pilares y pilotes de la estructura como
barras mediante el MEF. Este programa, muy desarrollado en la actualidad, ha
permitido el análisis de la respuesta de cimentaciones pilotadas, tanto en impedan-
cias como en interacción cinemática [18–20], aśı como el estudio de la respuesta de
la superestructura y de otras estructuras cercanas, sometido el conjunto a trenes
de ondas śısmicas con incidencia vertical [21, 22].

1.2. Objetivos y alcance

El objetivo principal de este Trabajo Fin de Máster es la formulación e imple-
mentación de un modelo simple que permita analizar la influencia de los fenómenos
de interacción suelo-estructura en la respuesta śısmica de un edificio. El modelo y
el estudio que se proponen se realizarán en el dominio de la frecuencia.

Además de este objetivo fundamental, pueden enumerarse otra serie de obje-
tivos metodológicos, de no menor interés, que servirán para la formación integral
de la Alumna e introducción a las tareas de investigación. Aśı, pueden destacarse:
la formación curricular en el campo de la dinámica de estructuras, su familiar-
ización con la gestión y recopilación de bibliograf́ıa y la elaboración de modelos y
programas informáticos, aśı como el uso de otros ya desarrollados para el estudio
de alguno de los problemas que debe afrontar.

1.3. Estructura del documento

En el caṕıtulo 2 se presenta un modelo, basado en la metodoloǵıa de sube-
structuración, para el análisis dinámico de estructuras de edificación. El caṕıtulo
3 se ha dedicado a la validación del modelo propuesto reproduciendo los resulta-
dos obtenidos por Veletsos & Meek [3] para cimentaciones superficiales. En él se
muestra el análisis de sensibilidad de la respuesta a determinados parámetros. En
el caṕıtulo 4 se expone la aplicación de este modelo a la obtención de la respues-
ta śısmica de estructuras de edificación pilotadas y se presentan los resultados.
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Finalmente, en el caṕıtulo 5 se realiza una revisión del modelo propuesto y se
extraen conclusiones de los resultados obtenidos, planteándose además posibles
actuaciones futuras en la misma ĺınea de investigación.





Caṕıtulo 2

Modelo para el análisis dinámico
de estructuras de edificación

2.1. Introducción

Las funciones de impedancia dinámica y los factores de interacción cinemática
de las cimentaciones se utilizan con frecuencia para predecir el comportamien-
to śısmico de estructuras teniendo en cuenta los efectos de la interacción suelo-
estructura. Esto se logra a través del empleo de modelos de subestructuración
más o menos elaborados en los cuales el suelo es reemplazado por resortes y amor-
tiguadores que representan su rigidez y amortiguamiento respectivamente. Por
otra parte, el movimiento śısmico de exitación que se emplea en el modelo de
subestructuración puede verse modificado de forma significativa por la presencia
de la cimentación en el suelo. Por lo tanto, en muchas ocasiones, el movimiento
de la cimentacion debe cálcularse teniendo en cuenta estos efectos de interacción
cinemática.

Los Modelos Directos constituyen una forma más precisa de analizar la res-
puesta del sistema cuando los efectos de la interaccion suelo-estructura pueden
ser relevantes, ya que modelan los aspectos principales del problema y sus inter-
acciones mutuas de manera más rigurosa. Sin embargo, estos modelos son más
complejos y resultan más costosos desde el punto de vista computacional, y por
consiguiente, no son utilizados con frecuencia para el análisis de este tipo de prob-
lemas.

En este trabajo, se explotan las ventajas de la Metodoloǵıa de Subestruc-
turación. Esta metodoloǵıa es sencilla y fácil de implementar, proporciona re-
sultados suficientemente precisos para el tipo de problemas que se abordan en
este trabajo, y al mismo tiempo permite realizar análisis paramétricos con muy
poco coste computacional (contando con las funciones de impedancia dinámica y
los factores de interacción cinemática como datos de partida).
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El contenido de este caṕıtulo comienza con una breve exposición de la técni-
ca de subestructuración en la sección 2.2. Seguidamente, el problema objeto de
estudio se describe en la sección 2.3. Posteriormente, se presenta el modelo de
subestructuración que se empleará a lo largo del resto del caṕıtulo en la sección
2.4, donde se deducen también sus ecuaciones de movimiento. El conjunto de
parámetros adimensionales elegidos para definir los sistemas objeto de estudio se
enumeran en la sección 2.5. En la sección 2.6, se expone de manera detallada
el proceso de adimensionalización de las ecuaciones del problema. Las ecuaciones
empleadas para la obtención de la respuesta del sistema en base ŕıgida se presentan
en la sección 2.7.

2.2. Metoloǵıa de subestructuración

En esta sección se exponen los fundamentos teóricos de la Metodoloǵıa de
subestructuración en la que se basan los modelos propuestos en el presente trabajo.

2.2.1. Fundamentos teóricos [1]

Las ecuaciones generales de movimiento del sistema suelo-estructura conside-
radas en el enfoque directo pueden escribirse en forma matricial como:

Mü+Cẏ +Ky = 0 (2.1)

donde y es el vector de desplazamientos relativos, u es el vector de aceleraciones
absolutas, üg es un vector de aceleración generalizada del terreno, y ÿ = ü− üg.
Es posible, de manera alternativa, escribir esta ecuación en forma de 2 ecuaciones:

M1ü1 +Cẏ1 +Ky1 = 0 (2.2)

Mÿ2 +Cẏ2 +Ky2 = −M2ü1 (2.3)

donde ü1 = ÿ1 + üg, u = u1 + y2, y = y1 + y2 y M = M1 +M2. M1 represen-
ta la masa del sistema excluyendo la masa de la estructura, mientras que M2

representa exclusivamente la masa de la estructura.
Una interpretación f́ısica de estas dos ecuaciones indica que en la ecuación

(2.2) el sistema con una estructura sin masa está sometido al movimiento pre-
scrito del suelo, produciendo como resultado el vector de desplazamientos y1 (o
de aceleraciones ÿ1); dado que M2 incluye sólo la masa de la estructura, en la
ecuación (2.3) el sistema completo está sometido a las fuerzas nodales equivalentes
−M2ü1 aplicadas sólo a la estructura. La solución total es, por lo tanto, la suma
de las dos soluciones.
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Para el caso particular donde la combinación cimentación-estructura es muy
ŕıgida, es posible eliminar todo el conjunto de la estructura de la ecuación (2.2)
y sustituirlo por una cimentación infinitamente ŕıgida de masa despreciable. Es-
to está justificado, dado que la estructura en este paso está actuando como un
cuerpo ŕıgido sin masa. La ecuación (2.2) describe entonces la respuesta de una
cimentación ŕıgida de masa despreciable sometida al movimiento del suelo especi-
ficado. Por otra parte, dado que las fuerzas sólo están aplicadas sobre la estructura
en la ecuación (2.3), los grados de libertad dinámicos correspondientes al suelo
pueden condensarse en este paso. Esta condensación da como resultado la expre-
sión de los efectos del suelo en términos de las funciones de impedancia dinámica,
normalmente representadas como resortes y amortiguadores. La condensación se
realizará para cada frecuencia incluyendo, ŕıgidez, amortiguamiento y términos
inerciales y, por lo tanto, las impedancias dinámicas del suelo son dependientes
de la frecuencia. y2 puede ser interpretada como un vector de desplazamientos
relativos a un soporte ficticio, mientras que u1 es el movimiento del soporte equiv-
alente.

Por consiguiente, para una cimientación ŕıgida es válido dividir la resolución
en tres pasos:

1. determinación del movimiento de la cimentación ŕıgida de masa despreciable
cuando está sometida al mismo movimiento de excitación que el sistema
completo. Esto es la resolución de la ecuación (2.2). Para una cimentación
embebida esto conducirá por lo general a traslaciones y rotaciones.

2. determinación de la impedancia en función de la frecuencia, para los grados
de libertad relevantes. Este paso se corresponde con la condensación dinámi-
ca de los grados de libertad del suelo. Esto conduce a los llamados “resortes”
del suelo.

3. cálculo de la respuesta de la estructura real sustentada sobre “resortes”
dependientes de la frecuencia que representan el suelo y sometida en la base
de estos “resortes” al movimiento calculado en el paso 1.

La única aproximación que implica esta metodoloǵıa tiene que ver con la de-
formabilidad de la cimentación estructural. Si esta cimentación fuese ŕıgida, la
solución obtenida mediante este procedimiento debeŕıa ser idéntica a la que pro-
porciona el método directo (suponiendo por supuesto definiciones consistentes del
movimiento y los mismos procedimientos numéricos).

2.2.1.1. Paso 1: Interacción cinemática

Este primer paso es particularmente sencillo para una cimentación superficial,
dado que sólo requiere resolver un problema de amplificación unidimensional para
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Figura 2.1: Métodoloǵıa de subestructuración [1]

producir resultados consistentes con los del método directo. Puesto que se tra-
ta de un problema unidimensional, puede ser resuelto de manera económica con
soluciones continuas o modelos discretos. Para una cimentación embebida, sin em-
bargo, se requiere el uso de algunas técnicas numéricas, empleadas en los métodos
directos, como los elementos finitos o los elementos de contorno. No obstante, el
problema es de menor tamaño puesto que los grados de libertad de la estructura
no están incluidos. Es importante mencionar de nuevo que una solución consis-
tente con los resultados del método directo producirá traslaciones y rotaciones en
una cimentación ŕıgida embebida de masa despreciable.

2.2.1.2. Paso 2: Funciones de impedancia dinámica

Las impedancias del suelo en función de la frecuencia se calculan, para una
cimentación embebida, mediante procedimientos similares a los empleados en los
métodos directos. El procedimiento consiste en someter a la base de la losa de
cimentación, supuesta infinitamente ŕıgida y de masa despreciable, a rotaciones y
desplazamientos armónicos estacionarios y unitarios, y determinar las reacciones
correspondientes (términos de la matriz de rigidez).

2.2.1.3. Paso 3: Cálculo de la respuesta del sistema

Una vez que el movimiento de excitación y las funciones de impedancia dinámi-
ca de la base son conocidas, el último paso se reduce a un simple análisis dinámico
de un relativamente pequeño sistema de varios grados de libertad. La resolución
puede llevarse a cabo en el dominio del tiempo o en el dominio de la frecuencia.
Una solución en el dominio de la frecuencia es especialmente conveniente, dado
que las impedancias son dependientes de la frecuencia.
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2.2.2. Ventajas e inconvenientes frente a los Métodos di-

rectos

La metodoloǵıa de subestructuración, o de los tres pasos, tiene la ventaja
de tener menor coste computacional, dado que incluso si se emplean técnicas de
elemententos finitos, el problema que se resuelve en cada paso es un problema
más pequeño. Esto permite, por tanto, realizar más estudios paramétricos, y la
precisión de cada paso está sujeta a un mejor control. De especial importancia es
la posibilidad de utilizar en este método las condiciones de simetŕıa o ciĺındricas
si la cimentación cumple con estos requisitos, incluso si la estructura no lo hace
(lo cual es frecuente).

Su principal deficiencia está en la reproducción de un cimiento flexible, y la
incapacidad para realizar verdaderos análisis no lineales en el dominio del tiempo.

2.3. Definición del problema

Este caṕıtulo se centra en la respuesta dinámica de estructuras lineales a cor-
tante que se comportan como sistemas de un sólo grado de libertad en su condi-
cion de base ŕıgida. Este modelo corresponde a un edificio de una planta o al
modo fundamental de vibración de estructuras multimodales de varias plantas.
Varios autores [15] resaltan el hecho de que la interacción suelo estructura afecta
principalmente al modo fundamental de vibración de estructuras de varias plan-
tas, justificando de este modo el uso de esta aproximación simplificada. De esta
manera, su comportamiento dinámico puede definirse mediante su periodo funda-
mental en base ŕıgida T , la altura h de la resultante de las fuerzas de inercia para
el primer modo, la masa m implicada en este modo, y el ratio de amortiguamiento
correspodiente a la estructura.

El sistema considerado consiste en una estructura simple y lineal, de masa m,
rigidez k y coeficiente de amortiguamiento viscoso c, con un solo grado de libertad
en su condición de base ŕıgida, que está soportada por una cimentación de masa
mo, sobre la superficie de un semiespacio homogéneo y linealmente elástico.

Las estructuras son exitadas en la base y los desplazamientos en campo li-
bre se han considerado como un movimiento armónico. La excitación armónica
se ha incluido tanto por su importancia en muchas aplicaciones prácticas, como
porque entender la respuesta del sistema a esta excitación en particular se con-
sidera esencial para entender la respuesta frente a excitaciones transitorias más
complejas.

Los efectos del empotramiento de la cimentación, los estratos de la cimentación
y el amortiguamiento del material en el subespacio no se han tenido en cuenta.

La cimentación se ha idealizado como una placa ŕıgida y circular, y los pi-
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lares de la estructura se han considerado de masa despreciable e inextensibles
axialmente. Ambas, la masa de la cimentación y la masa de la estructura se han
supuesto uniformemente distribuidas en áreas circulares.

Este modelo de cimentación-estructura parece haber sido utilizado por primera
vez por Parmelee [8] en 1967, y ha constituido la base de la mayoŕıa de las inves-
tigaciones posteriores.

2.4. Modelo de subestructuración

Este problema puede estudiarse mediante una aproximación por subestruc-
turación, en la cual el sistema está dividido en el sistema cimiento-estructura, y la
rigidez y el amortiguamiento entre el suelo y el cimiento, representada por medio
de resortes y amortiguadores, tal y como se muestra en la Figura 2.2.

Figura 2.2: Modelo de subestructuración de una estructura de una planta

Los movimientos horizontal uc
r y de giro ϕc

r de la cimentación están definidos
en la base de la estructura y en relación a los movimientos que se aplican sobre el
cimiento.
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Las funciones dependientes de la frecuencia (Kxx, Cxx), (Kθθ, Cθθ) y (Kxθ, Cxθ)
representan la rigidez y el amortiguamiento del suelo en los modos de vibración
horizontal, de balanceo y modo de vibración cruzado horizontal-balanceo, respec-
tivamente. A estas funciones se les denomina impedancias.

Por lo tanto, las ecuaciones de movimiento del sistema mostrado en la Figu-
ra 2.2, asumiendo pequeños desplazamientos, pueden escribirse en términos de
movimientos relativos como

m · [¨̃u+ üc
r + üg + h(ϕ̈g + ϕ̈c

r)] +K · ũ = 0 (2.4)

mo · [ü
c
r + üg] + K̂xx · u

c
r + K̂xθ · ϕ

c
r −K · ũ = 0 (2.5)

m·h[¨̃u+üc
r+üg+h(ϕ̈g+ϕ̈c

r)]+I(ϕ̈c
r+ϕ̈g)+K̂θx ·u

c
r+K̂θθ ·ϕ

c
r+Io(ϕ̈

c
r+ϕ̈g) = 0 (2.6)

donde la ecuación (2.4) representa el equilibrio de fuerzas horizontales de la es-
tructura, la ecuación (2.5) el equilibrio de fuerzas horizontales del cimiento y la
ecuación (2.6) el equilibrio de momentos del sistema cimiento-estructura con res-
pecto a un eje horizontal que pasa por el centro de gravedad del cimiento.

Pasando al lado derecho de la igualdad el campo incidente, las ecuaciones
anteriores se escriben

m (¨̃u+ üc
r + h ϕ̈c

r) +K · ũ = −m (üg + h ϕ̈g) (2.7)

moü
c
r + K̂xx · u

c
r + K̂xθ · ϕ

c
r −K · ũ = −mo · üg (2.8)

m · h (¨̃u+ üc
r + h · ϕ̈c

r) + K̂θx · u
c
r + K̂θθ · ϕ

c
r + I · ϕ̈c

r + Io · ϕ̈
c
r =

−m · h (üg + h · ϕ̈g)− Io · ϕ̈g − I · ϕ̈g (2.9)

Considerando movimientos armónicos del tipo ũ(t) = ũeiωt donde ω es la
frecuencia de excitación, las ecuaciones anteriores pueden escribirse en el dominio
de la frecuencia como

(K −mω2) · ũ−mω2 uc
r − hmω2 ϕc

r = mω2 (ug + hϕg) (2.10)

−K ũ−moω
2 uc

r + K̂xx u
c
r + K̂xθ ϕ

c
r = ω2mo ug (2.11)
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− ω2 mh ũ+ (K̂θx − ω2mh) uc
r + (K̂θθ −mω2 h2 − ω2 Io)ϕ

c
r =

ω2mh (ug + hϕg) + ω2 Io ϕg (2.12)

Estas ecuaciones pueden expresarse de forma matricial como









K −mω2 −mω2 −hω2 m

−K K̂xx −mo ω
2 K̂xθ

−ω2 hm K̂θx − ω2 mh K̂θθ −mω2 h2 − ω2 Io − ω2 I

















ũ

uc
r

ϕc
r









=









mω2 (ug + hϕg)

ω2 moug

ω2 mh (ug + hϕg) + (Io + I)ω2 ϕg









(2.13)

Escribiendo de forma separada la matriz de rigidez y la matriz de masa, aśı co-
mo los campos incidentes de desplazamiento y giro, se obtiene









K 0 0

−K K̂xx K̂xθ

0 K̂θx K̂θθ

















ũ

uc
r

ϕc
r









− ω2









m m mh

0 mo 0

mh mh mh2 + I + Io

















ũ

uc
r

ϕc
r









=

ω2









m

mo

mh









ug + ω2









mh

0

mh2 + Io + I









ϕg (2.14)

2.5. Parámetros adimensionales del problema

La respuesta del sistema cimiento-estructura depende de las propiedades del
cimiento y del suelo, las propiedades de la estructura y de las caracteŕısticas
de la excitación. Los efectos de estos factores pueden expresarse en términos de
parámetros adimensionales [3].
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1. Parámetro de onda (wave parameter), que mide la rigidez relativa suelo-
estructura.

σ =
Cs

f · h
= 3, 5,∞ (2.15)

donde:

Cs es la velocidad propagación de la onda S en el suelo.

Cs =

√

µ

ρ
(2.16)

f es frecuencia natural en Hz de la estructura sobre base ŕıgida.

f =
1

T
=

p

2π
(2.17)

donde p es la frecuencia natural en rad/s de la estructura sobre base
ŕıgida.

2. Ratio de esbeltez (slenderness ratio) h/r = 1, 2, 5 mide la relación entre la
altura de la estructura y el radio del cimiento.

3. Densidad de masa relativa entre la estructura y el suelo.

δ =
m

ρπr2h
= 0,15 (2.18)

donde:

ρ es la densidad del suelo.

4. Ratio de masa cimiento-estructura mo
m

= 0

5. Coeficiente de amortiguamiento de la estructura en base ŕıgida ξ = 0,02.

6. Coeficiente de Poisson del suelo ν = 0,45.

7. Frecuencia de exitación ω.

2.6. Adimensionalización de las ecuaciones del

problema

En esta sección se expone de forma detallada el proceso de adimensionalización
de las ecuaciones de movimiento del sistema (2.4),(2.5),(2.6) presentadas en la
sección 2.4.
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2.6.1. Estructura con amortiguamiento viscoso

Considerando amortiguamiento viscoso para el material de la estructura se
obtiene

K = k + iωC = k + 2mpξωi (2.19)

Por otra parte, las expresiones de las impedancias del suelo son

K̂xx = ke
xx · (kxx + iaocxx) = Kxx + iaoCxx (2.20)

K̂θθ = ke
θθ · (kθθ + iaoCθθ) = Kθθ + iaoCθθ (2.21)

K̂xθ = K̂θx = −ke
xx · (kxθ + iaoCxθ) = Kxθ + iaoCxθ (2.22)

donde las impedancias estáticas, ke
xx y ke

θθ, tienen las siguientes expresiones

ke
xx =

8µr

2− ν
(2.23)

ke
θθ =

8µr3

3(1− ν)
(2.24)

y la frecuencia adimensional se expresa como

ao =
ωr

Cs

=
2π

σ

ω

p

r

h
(2.25)

Introduciendo las expresiones de la rigidez de la estructura y de las impedancias
del suelo en la ecuación (2.14) se obtiene
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







k 0 0

−k Kxx Kxθ

0 Kθx Kθθ

















ũ

uc
r

ϕc
r









+ iao









2mpξω

ao
0 0

−2mpξω

ao
Cxx Cxθ

0 Cθx Cθθ

















ũ

uc
r

ϕc
r









−

ω2









m m mh

0 mo 0

mh mh mh2 + Io + I

















ũ

uc
r

ϕc
r









=

ω2









m

mo

mh









ug + ω2









mh

0

mh2 + Io + I









ϕg (2.26)

Sumando las ecuaciones primera y segunda del sistema matricial, la segunda
ecuación representará el equilibrio horizontal del conjunto, aśı









k 0 0

0 Kxx Kxθ

0 Kθx Kθθ

















ũ

uc
r

ϕc
r









+ iao









2mpξω

ao
0 0

0 Cxx Cxθ

0 Cθx Cθθ

















ũ

uc
r

ϕc
r









−

ω2









m m mh

m m+mo mh

mh mh mh2 + Io + I

















ũ

uc
r

ϕc
r









=

ω2









m

m+mo

mh









ug + ω2









mh

mh

mh2 + Io + I









ϕg (2.27)

Considerando la siguiente expresión para la rigidez de la estructura sin amor-
tiguamiento

k = p2 ·m (2.28)

la ecuación matricial queda
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







p2m 0 0

0 Kxx Kxθ

0 Kθx Kθθ

















ũ

uc
r

ϕc
r









+ iao









2mpξω

ao
0 0

0 Cxx Cxθ

0 Cθx Cθθ

















ũ

uc
r

ϕc
r









−

ω2









m m mh

m m+mo mh

mh mh mh2 + Io + I

















ũ

uc
r

ϕc
r









=

ω2









m

m+mo

mh









ug + ω2









mh

mh

mh2 + Io + I









ϕg (2.29)

Sacando como factor común la masa de la estructura m a ambos lados de la
igualdad y sumando las matrices del primer término de la igualdad, se obtiene

m









p2 + 2pωξi− ω2 −ω2 −ω2h

−ω2 K̂xx

m
− ω2 − ω2mo

m
K̂xθ

m
− ω2h

−ω2h K̂θx

m
− ω2h K̂θθ

m
− ω2h2 − ω2 Io+I

m









·









ũ

uc
r

ϕc
r









= −m









1

1 + mo

m

h









üg −m









h

h

h2 + Io+I
m









ϕ̈g (2.30)

Sacando como factor común ω2/p2 del primer término de la igualdad se llega
a la siguiente expresión

ω2

p2









p2

ω2 + 2 p

ω
ξi− 1 −1 −h

−1 1
mω2 K̂xx − 1− mo

m
1

mω2 K̂xθ − h

−h 1
mω2 K̂θx − h 1

mω2 K̂θθ − h2 − Io+I
m









·









p2ũ

p2uc
r

p2ϕc
r









= −









1

1 + mo

m

h









üg −









h

h

h2 + Io+I
m









ϕ̈g (2.31)
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Diviendo entre h la última fila de la ecuación y la última columna de la matriz
del sistema, la expresión queda

ω2

p2









p2

ω2 + 2 p

ω
ξi− 1 −1 −1

−1 1
mω2 K̂xx − 1− mo

m
1

mω2h
K̂xθ − 1

−1 1
mω2h

K̂θx − 1 1
mω2h2 K̂θθ − 12 − Io+I

mh2









·









p2ũ

p2uc
r

p2hϕc
r









= −









1

1 + mo

m

1









üg −









h

h

h+ Io+I
mh









ϕ̈g (2.32)

La inercia a giro de la cimentación se expresa como

Io =
mor

2

4
(2.33)

Por otra parte, la inercia a giro de la estructura tiene la siguiente expresión

I =
mr2

4
(2.34)

Sustituyendo las expresiones (2.33) y (2.34) en el sistema de ecuaciones (2.32)
queda

ω2

p2









p2

ω2 + 2 p

ω
ξi− 1 −1 −1

−1 1
mω2 K̂xx − 1− mo

m
1

mω2 K̂xθ − 1

−1 1
mω2h

K̂θx − 1 1
mω2h2 K̂θθ − 1− r2

4h2

(

1 + mo

m

)









·









p2ũ

p2uc
r

p2hϕc
r









= −









1

1 + mo

m

1









üg − h









1

1

1 + r2

4h2

(

1 + mo

m

)









ϕ̈g (2.35)

A continuación se adimensionalizan los términos de la matriz del sistema (2.35)
donde aparecen las expresiones de las impedancias, aśı el término (2,2) queda

1

mω2
K̂xx − 1−

mo

m
(2.36)
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si

K̃xx =
K̂xx

µr
=

8

2− ν
(kxx + iaocxx) (2.37)

sustituyendo en la ecuación (2.36):

1

mω2

8µr

2− ν
(kxx + iaocxx)− 1−

mo

m
=

=
1

mω2
µr

[

8

2− ν
(kxx + iaocxx)

]

− 1−
mo

m
=

1

mω2
µr · K̃xx − 1−

mo

m
(2.38)

Procediendo de forma análoga con el término (3,3) de la matriz del sistema
(2.35) se tiene

1

mω2h2
K̂θθ − 1−

b2

4h2

(

1 +
mo

m

)

(2.39)

si:

K̃θθ =
K̂θθ

µr3
=

8

3(1− ν)
(kθθ + iaocθθ) (2.40)

Sustituyendo en la ecuación (2.39) queda

1

mω2h2
K̂θθ − 1−

r2

4h2

(

1 +
mo

m

)

=

1

mω2h2
µr3

[

8

3(1− ν)
(kθθ + iaocθθ)

]

− 1−
r2

4h2

(

1 +
mo

m

)

=

1

mω2h2
µr3 · K̃θθ − 1−

r2

4h2

(

1 +
mo

m

)

(2.41)

Sustituyendo la expresión de la velocidad de propagación en el suelo Cs (2.16)
en las ecuaciones (2.38) y (2.41), respectivamente, se obtiene:

1

mω2
µr · K̃xx − 1−

mo

m
=

1

mω2
C2

sρr · K̃xx − 1−
mo

m
(2.42)
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1

mω2h2
µr3 · K̃θθ − 1−

r2

4h2

(

1 +
mo

m

)

=

1

mω2h2
C2

sρr
3 · K̃θθ − 1−

r2

4h2

(

1 +
mo

m

)

(2.43)

Despejando ρ de la ecuación (2.18) se obtiene:

ρ =
m

δπr2h
(2.44)

Sustituyendo esta expresión en las ecuaciones (2.42) y (2.43) se obtiene

1

mω2
C2

sρr · K̃xx − 1−
mo

m
=

1

mω2
C2

s

m

δπr2h
r · K̃xx − 1−

mo

m
(2.45)

1

mω2h2
C2

sρr
3 · K̃θθ − 1−

r2

4h2

(

1 +
mo

m

)

=

1

mω2h2
C2

s

m

δπr2h
r3 · K̃θθ − 1−

r2

4h2

(

1 +
mo

m

)

(2.46)

Despejando Cs de la ecuación (2.15) y sustituyendo f por su expresión (2.17)
se obtiene

Cs = σ
p

2π
h (2.47)

Sustituyendo esta expresión en las ecuaciones (2.45) y (2.46) queda

1

mω2
C2

s

m

δπr2h
r · K̃xx − 1−

mo

m
=

1

mω2
σ2 p2

4π2
h2 m

δπr2h
r · K̃xx − 1−

mo

m
=

p2

ω2
σ2 1

4π3

h

r

1

δ
· K̃xx − 1−

mo

m
(2.48)

1

mω2h2
C2

s

m

δπr2h
r3 · K̃θθ − 1−

r2

4h2

(

1 +
mo

m

)

=

p2

ω2
σ2 1

4π3

r

h

1

δ
· K̃θθ − 1−

r2

4h2

(

1 +
mo

m

)

(2.49)
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Sustituyendo las expresiones obtenidas, (2.48) y (2.49), en la ecuación del
sistema (2.35) en los términos (2,2) y (3,3) respectivamente, la ecuación matricial
queda:

ω2

p2









p2

ω2 + 2 p

ω
ξi− 1 −1 −1

−1 p2

ω2σ
2 1
4π3

h
r
1
δ
· K̃xx − 1− mo

m
1

mω2 K̂xθ − 1

−1 1
mω2h

K̂θx − 1 p2

ω2σ
2 1
4π3

r
h
1
δ
· K̃θθ − 1− r2

4h2

(

1 + mo

m

)









·









p2ũ

p2uc
r

p2hϕc
r









= −









1

1 + mo

m

1









üg − h









1

1

1 + r2

4h2

(

1 + mo

m

)









ϕ̈g (2.50)

Analizando los términos de la matriz donde aparecen las impedancias cruzadas
se obtiene:

1

mω2h
µr2K̃xθ − 1 =

p2

ω2
σ21

δ

1

4π3
K̃xθ − 1 (2.51)

1

mω2h
µr2K̃θx − 1 =

p2

ω2
σ21

δ

1

4π3
K̃θx − 1 (2.52)

Sustituyendo las expresiones (2.51) y (2.52) en la ecuación (2.50):

ω2

p2









p2

ω2 + 2 p

ω
ξi− 1 −1 −1

−1 p2

ω2σ
2 1
4π3

h
r
1
δ
· K̃xx − 1− mo

m

p2

ω2σ
2 1
δ

1
4π3 K̃xθ − 1

−1 p2

ω2σ
2 1
δ

1
4π3 K̃θx − 1 p2

ω2σ
2 1
4π3

r
h
1
δ
· K̃θθ − 1− r2

4h2

(

1 + mo

m

)









·









p2ũ

p2uc
r

p2hϕc
r









= −









1

1 + mo

m

1









üg − h









1

1

1 + r2

4h2

(

1 + mo

m

)









ϕ̈g (2.53)

lo que es igual que
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ω2

p2









p2

ω2 + 2 p

ω
ξi− 1 −1 −1

−1 p2

ω2σ
2 1
4π3

h
r
1
δ
· K̃xx − 1− mo

m

p2

ω2σ
2 1
δ

1
4π3 K̃xθ − 1

−1 p2

ω2σ
2 1
δ

1
4π3 K̃θx − 1 p2

ω2σ
2 1
4π3
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2.6.2. Estructura con amortiguamiento histerético

Las ecuaciones del problema, considerando amortiguamiento histerético para
el material de la estructura, se obtienen siguiendo el procedimiento descrito en el
apartado 2.6.1, sustituyendo la expresión del amortiguamiento viscoso (2.19) por
la siguiente expresión para amortiguamiento histerético

K = k(1 + 2ξi) (2.55)

De este modo las ecuaciones del problema quedan
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üg +
h

r









1

1

1 + r2

4h2

(

1 + mo

m

)









(ϕ̈r)g (2.56)

2.7. Respuesta del sistema en base ŕıgida

Los resultados para el valor de σ =∞ se han obtenido empleando la ecuación
para el cálculo de la respuesta del sistema en base ŕıgida. A continuación se de-
duce la expresión de dicha ecuación en los casos de amortiguamiento viscoso y
amortiguamiento histerético del material de la estructura.
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2.7.1. Estructura con amortiguamiento viscoso

m¨̃u+ c ˙̃u+ kũ = −müg (2.57)

[−ω2m+ iωc+ k]ũ = −müg (2.58)

[

−ω2 + iω2ξp+ p2
]

ũ = −üg (2.59)

p2ũ

üg

=
−1

1 + 2ξ ω
p
i− ω2

p2

(2.60)

2.7.2. Estructura con amortiguamiento histerético

m¨̃u+ c ˙̃u+ kũ = −müg (2.61)

[k(1 + 2ξi)− ω2m]ũ = −müg (2.62)

[p2(1 + 2ξi)− ω2]ũ = −üg (2.63)

p2ũ

üg

=
−1

(1 + 2ξi)− ω2

p2

(2.64)



Caṕıtulo 3

Validación del modelo

3.1. Introducción

En este caṕıtulo, con objeto de validar el modelo presentado en el caṕıtulo 2,
se presenta un estudio comparativo de los resultados obtenidos a partir de dicho
modelo con otros resultados existentes en la bibliograf́ıa.

En este sentido, se han reproducido los resultados obtenidos por Veletsos &
Meek [3] para cimentaciones superficiales. Las funciones de impedancia del suelo
se han tomado de un art́ıculo de Bielak [12], que a su vez han sido extráıdas de
un art́ıculo previo de Verbic & Veletsos [2].

En la sección 3.2 se exponen las funciones de impedancias del suelo que apare-
cen en el art́ıculo de Bielak [12], aśı como las que figuran en el art́ıculo de Veletsos
& Meek [3], y se realiza un análisis comparativo entre ambas. Posteriormente, en
la sección 3.3, se muestran los espectros de respuesta del sistema obtenidos con el
modelo propuesto en el caṕıtulo 2, cuyas curvas se presentan superpuestas sobre
las obtenidas por Veletsos & Meek [3]. Asimismo, se realiza un estudio de la in-
fluencia del tipo de amortiguamiento de la estructura, viscoso o histerético, sobre
el espectro de respuesta del sistema. Seguidamente, en la sección 3.4 se presenta
un análisis de sensibilidad del espectro de respuesta del sistema a la variación del
parámetro mo/m, que representa la relación entre la masa de la cimentación y
la masa de la estructura. Finalmente, en la sección 3.5, se presentan los resulta-
dos de los análisis paramétricos efectuados aśı como el algoritmo empleado para
acometerlos.

3.2. Funciones de impedancia dinámica del suelo

En esta sección se presentan las funciones de impedancia dinámica del suelo
empleadas para la validación del modelo. Por otra parte, se exponen los resultados
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de un análisis comparativo entre los valores de impedancias propuestos por Verbic
& Veletsos [2] y los que figuran en el art́ıculo de Veletsos & Meek [3]

3.2.1. Impedancias del suelo por Verbic & Veletsos [2]

En la caracterización del sistema y a efectos de cálculo se han considerado los
valores de las impedancias del suelo que aparecen en el art́ıculo de Bielak [12] que
fueron obtenidos previamente en una publicación de Verbic & Veletsos [2].

Las impedancias adimensionales del problema son K̂xx, K̂θθ,K̂xθ y K̂θx. De las
cuales K̂xθ y K̂θx son iguales, como consecuencia de teoremas de reciprocidad. Las
funciones de impedancia se expresan como

K̂xx = ke
xx · (kxx + iaocxx) = Kxx + iaoCxx (3.1)

K̂θθ = ke
θθ · (kθθ + iaoCθθ) = Kθθ + iaoCθθ (3.2)

K̂xθ = K̂θx = −ke
xx · (kxθ + iaoCxθ) = Kxθ + iaoCxθ (3.3)

donde

ao =
ωr

Cs

(3.4)

y las rigideces estáticas se expresan como

ke
xx =

8µr

2− ν
(3.5)

ke
θθ =

8µr3

3(1− ν)
(3.6)

Las funciones Kxx,Kθθ, Cxx y Cθθ representan la parte real e imaginaria, re-
spectivamente, de las funciones de impedancia correspondientes a las reacciones
del suelo sobre el cimiento. Éstas pueden calcularse a partir de resultados numéri-
cos disponibles [23] [24] para valores del parámetro de frecuencia ao hasta 10 y
para varios valores del coeficiente de Poisson del suelo, ν. En este caso, dichas
funciones se calcularon a partir de las soluciones aproximadas presentadas por
Verbic & Veletsos [2]

kxx = 1 (3.7)
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cxx = b1 (3.8)

kθθ = 1−
b1((b2 · ao)

2

1 + (b2 · ao)2 − b3 · a2o
(3.9)

cθθ =
b1b2(b2 · ao)

2

1 + (b2ao)2
(3.10)

donde b1, b2 y b3 son valores adimensionales que dependen de ν, tal y como se
muestra en la tabla:

Tabla 3.1: Valores de bi (según Verbic & Veletsos [2])

ν

0 1
3

0,45 0,5

b1 0,525 0,5 0,45 0,4

b2 0,8 0,8 0,8 0,8

b3 0 0 0,023 0,027
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Figura 3.1: Coeficientes adimensionales de las impedancias del suelo, para el
caso de cimentación superficial, por Verbic & Veletsos [2]
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3.2.2. Impedancias del suelo por Veletsos & Meek [3]

Los cálculos realizados se han verificado también utilizando los valores para las
impedancias propuestos por Veletsos & Meek [3]. Las expresiones de las funciones
de impedancia, en este caso, son las siguientes

Kxx = αxK (3.11)

Kθθ = αθK (3.12)

Cxx = βx

Kr

Cs

(3.13)

Cθθ = βθ

Kr

Cs

(3.14)

donde

K =
8

2− ν
µr (3.15)

Las expresiones de Kxx,Kθθ, Cxx y Cθθ representan la parte real e imaginaria,
respectivamente, de las funciones de impedancia correspondientes a las reacciones
del suelo sobre el cimiento.

Los factores αx, αθ, βx y βθ, son factores adimensionales que dependen del
coeficiente de Poisson para el material del suelo ν, y del parámetro de frecuencia
adimensional

ao =
ωr

Cs

(3.16)

Los valores de α y β para un suelo con ν = 0,45 son los que se muestran
en la Figura 3.2. Estas curvas han sido digitalizadas a partir de las curvas que
figuran en el art́ıculo de Veletsos & Meek [3] están basadas en datos de un art́ıculo
de Veletsos & Wei [24], donde también aparecen los datos correspondientes para
otros valores de ν.

3.2.3. Impedancias del suelo: Veletsos & Meek [3] vs Ver-

bic & Veletsos [3]

En esta sección se realiza un análisis comparativo de las expresiones de las
impedancias según Veletsos & Meek [3] y Verbic & Veletsos [2].

La razón por la que se acomete este análisis es la detección de una posible
errata, en la expresión de Veletsos & Meek [3] para Cθθ, durante el proceso de
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Figura 3.2: Coeficientes adimensionales de las impedancias del suelo, para el
caso de cimentación superficial, por Veletsos & Meek [3]

adimensionalización de las ecuaciones del sistema haciendo uso de dichas expre-
siones.

La imposibilidad de adimensionalizar las ecuaciones del sistema implemen-
tando la expresión de Cθθ propuesta en el citado art́ıculo, motivó la siguiente
comparación entre las expresiones de ambos autores con el objetivo de verificar si
concuerdan o no.

Partiendo de la hipótesis de que las expresiones (3.12) y (3.14) debeŕıan estar
multiplicadas por r2. Siendo aśı, para un valor de ν = 0,45 se cumpliŕıa que

kθ = 1,06 · αθ (3.17)

cθ = 1,06 · βθ (3.18)

En la Figura 3.3 se representan los coeficientes adimensionales de las impedan-
cias del suelo definidas en el art́ıculo de Veletsos & Meek [3], representados con
trazo azul, frente a los definidos en el art́ıculo de Verbic & Veletsos [2], repre-
sentados en trazo verde discont́ınuo, aśı como estos últimos una vez aplicada la
corrección explicada anteriormente, representados con ĺınea de puntos en color
rojo.

En la Figura 3.4 se muestra el espectro de respuesta de un sistema con ci-
mentación superficial de masa despreciable, exitado armónicamente, considerando
el giro nulo ϕ̈g = 0, y amortiguamiento viscoso para el material de la estructura.
Se representan de manera superpuesta las curvas obtenidas considerando las ex-
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Tabla 3.2: Funciones de impedancia dinámica del suelo para el caso de ci-
mentación superficial. Verbic & Veletsos vs Veletsos & Meek

Verbic & Veletsos Veletsos & Meek

K̃j = Kj + iaoCj

ao =
ωr
Cs

K̃j = ke
j [kj + iaocj] K̃j = K[αj + iaoβj]

ke
x = 8

2−ν
µr K = 8

2−ν
µr

ke
θ =

8
3(1−ν)

µr3

K̃x = 8
2−ν

µr[kx + iaocx] K̃x = 8
2−ν

µr[αx + iaoβx]

kx = αx ; cx = βx

Kθ =
8

3(1−ν)
µr3[kθ + iaocθ] Kθ =

8
3(1−ν)

µr[αθ + iaoβθ]

kθ =
3(1−ν)
(2−ν)r2

αθ ; cθ =
3(1−ν)
(2−ν)r2

βθ

presiones para las impedancias del suelo propuestas por Veletsos & Meek [3], con
trazo azul, las obtenidas para las impedancias del suelo propuestas en el art́ıculo
de Bielak [12], con trazo verde discont́ınuo, y por último las curvas digitalizadas
del art́ıculo de Veletsos & Meek [3], con ĺınea de puntos en color rojo.

Se observa como la curva del espectro de respuesta obtenido a partir de las
expresiones propuestas en el art́ıculo de Veletsos & Meek [3] para las impedan-
cias del suelo, en color azul, no se corresponde con las otras dos representadas.
Esto corrobora la hipótesis de la existencia de una errata en las expresiones para
las impedancias propuestas en dicho art́ıculo. Por este motivo, para los cálculos
expuestos se han empleado las expresiones para las impedancias del suelo que
figuran en el art́ıculo de Bielak [12].
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Figura 3.3: Coeficientes adimensionales de las impedancias del suelo para el caso
de cimentación superficial [3] [2]
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3.3. Cimentaciones superficiales de masa despre-

ciable

En esta sección se reproducen los resultados obtenidos por Veletsos & Meek [3]
para el espectro de respuesta del sistema considerando cimentaciones superficiales
de masa despreciable.

En el caso de las cimentaciones superficiales no existe impedancia cruzada
K̂xθ = K̂θx = 0. Despreciando la masa de la cimentación mo = 0 e Io = 0 y si se
considera nulo el giro del campo incidente, ϕ̈g = 0, se obtienen las ecuaciones del
problema.

3.3.0.1. Amortiguamiento Viscoso

En el caso de que el material de la estructura tuviera amortiguamiento viscoso,
las ecuaciones del problema quedan

ω2
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üg (3.19)

donde, en este caso, ξ = 0,02, δ = 0,15 y ν = 0,45.

En las Figuras 3.5, 3.6 y 3.7 se muestran, con trazo verde discont́ınuo, los
resultados obtenidos utilizando los valores de las impedancias del suelo propuestos
en el art́ıculo de Bielak [12] y se contrastan con los obtenidos de la digitalización
de las curvas de las Figuras 4 y 5 del art́ıculo de Veletsos & Meek [3], representados
con trazo azul.

La respuesta de la estructura se ha expresado en términos del espectro de
respuesta de su deformación lateral, definido como abs(p2u/üg), donde p = 2πf
es la frecuencia fundamental de la estructura en base ŕıgida y üg = ω2ug, siendo
ω la frecuencia de exitación y ug el desplazamiento horizontal en campo libre en
la superficie del suelo. La utilidad de esta variable deriva del hecho de que el
producto de este valor por la masa de la estructura y la aceleración horizontal en
campo libre correspondiente a nivel de la superficie se corresponde con la amplitud
del esfuerzo cortante en la base de la estructura.
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Los resultados para el valor de σ =∞ se han obtenido empleando la ecuación
para el cálculo de la respuesta del sistema en base ŕıgida.

p2ũ

üg

=
−1

1 + 2ξ ω
p
i− ω2

p2

(3.20)
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La información presentada en las Figura 3.8 revela, tal y como señalan Veletsos
& Meek [3], que la interacción suelo-estructura tiene dos efectos principales:

1. Disminuye la frecuencia de resonancia del sistema hasta un valor inferior al
aplicable a la estructura en base ŕıgida, desplazando el máximo del espectro
de respuesta hacia la derecha.

2. Modifica la magnitud de la respuesta máxima, disminuyendo el valor para
estructuras no esbeltas y aumentando el valor para estructuras altas y es-
beltas.

Estos cambios son función de los parámetros σ y h/r. A menor valor de σ o a
mayor valor de h/r, los dos efectos de la interacción se vuelven más pronunciados.

Debido al incremento de flexibilidad del cimiento, el sistema en el que se con-
sidera la interacción suelo-estructura es un sistema menos ŕıgido y tiene una menor
frecuencia de resonancia que el sistema en base ŕıgida. Aśı se explica el primer
efecto.

El segundo efecto, que aparenta ser contradictorio a primera vista, no es tan
obvio y requiere una explicación más detenida. El cambio en la magnitud de la
repuesta máxima es el resultado de dos mecanismos opuestos. Debido a la enerǵıa
que se disipa por radiación dentro del medio de soporte, el amortiguamiento eficaz
de la estructura en base flexible es mayor que el de la estructura en base ŕıgida, y
esto tiende a disminuir la respuesta del sistema con interacción suelo-estructura.
Sin embargo, el giro de la cimentación aumenta la aceleración de la masa y la
fuerza de inercia asociada, y este efecto conduce a un incremento de la respuesta.
En lo referente a las razones que se apuntan en los siguientes párrafos, el primer
factor es el dominante para estructuras bajas, mientras que el segundo factor es
el dominante para el caso de estructuras altas.

En el caso de estructuras no esbeltas (h/r = 1), el pequeño aumento de la
respuesta debido al giro de la cimentación está más que compensado por la gran
reducción de la respuesta debida a la disipación por radiación de la tensión.

En el caso de estructuras esbeltas (h/r = 5), el movimiento de giro de la
cimentación y el aumento de la respuesta asociado es, obviamente, bastante im-
portante. En cambio, la reducción en la respuesta debida al efecto de radiación
es extremadamente pequeña. En este caso, el efecto resultante es un aumento en
la respuesta y una reducción en el amortiguamiento eficaz del sistema. Debe ten-
erse encuenta, sin embargo, que el efecto del amortiguamiento del material del
semiespacio no se ha incorporado en esta solución. La consideración de este efecto
aumentaŕıa el amortiguamiento eficaz del sistema con interacción suelo-estructura
y disminuiŕıa su respuesta.
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3.3.0.2. Discusión del espectro de respuesta en base ŕıgida

En las curvas del gráfico de la Figura 3.7, se observa cómo el valor máximo de
la respuesta del sistema se produce para un valor del cociente entre la frecuencia
natural de vibración del sistema y la frecuencia de la exitación p/w muy próximo
a la unidad. Esto es correcto y puede comprobarse a partir de la expresión para
la frecuencia de vibración libre de un sistema amortiguado [25]

pD = p
√

1− ξ2 (3.21)

donde
pD es la es la frecuencia natural en rad/s de la estructura sobre base ŕıgida y

con un coeficiente de amortiguamiento ξ.
p es la es la frecuencia natural en rad/s de la estructura sobre base ŕıgida y

sin amortiguamiento.
Sustituyendo en esta expresión el valor del coeficiente de amotiguamiento que

se ha empleado en los cálculos efectuados hasta el momento, ξ = 0,02, se obtiene
un valor de la frecuencia de vibración del sistema de pD = 0,9998 ≈ 1.

Dado que se trata de un sistema amortiguado, ξ = 0,02, el valor de p/w debe
ser distinto de uno. Con el objetivo de esclarecer esta duda y verificar que las
expresiones y los cálculos efectuados en este sentido son correctos, se muestra
un estudio de la respuesta máxima del sistema en el entorno de p/w = 1 para
distintos valores del coeficiente de amortiguamiento ξ. En la Figura 3.9 se observa
un desplazamiento del máximo de la respuesta hacia la derecha con el aumento
del coeficiente de amortiguamiento ξ, aśı como una reducción de la amplitud de
la misma.
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3.3.1. Amortiguamiento Histerético

En el caso de que el material de la estructura tuviera amortiguamiento his-
terético, las ecuaciones del problema quedan
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
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1
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

üg (3.22)

donde, en este caso, ξ = 0,02, δ = 0,15 y ν = 0,45.
En las Figuras 3.10, 3.11 y 3.12 se muestran, con trazo verde discont́ınuo, los

resultados obtenidos utilizando los valores de las impedancias del suelo propuestos
en el art́ıculo de Bielak [12] y se contrastan con los obtenidos de la digitalización
de las curvas de las Figuras 4 y 5 del art́ıculo de Veletsos & Meek [3], representados
con trazo azul.

Los resultados para el valor de σ =∞ se han obtenido empleando la ecuación
para el cálculo de la respuesta del sistema en base ŕıgida.

p2ũ

üg

=
−1

(1 + 2ξi)− ω2

p2

(3.23)
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3.3.2. Análisis de la influencia del tipo de amortiguamien-
to de la estructura en la respuesta

En la Figura 3.14 se muestra la superposición de las curvas obtenidas para
el espectro de respuesta en el caso de amortiguamiento viscoso del material de
la estructura, respresentada con trazo verde discont́ınuo, y para el caso de amor-
tiguamiento histerético, en trazo azul.

Puede observarse como el espectro de respuesta apenas se ve afectado, en este
caso, por el tipo de amortiguamiento de la estructura.
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3.4. Cimentaciones superficiales con masa no de-

spreciable

En este apartado se pretende contrastar la validez de la simplificación que
adoptan muchos autores al despreciar la masa de la cimentación superficial en
los cálculos. Para ello se ha realizado un análisis de sensibilidad del espectro de
respuesta a la variación del parámetro mo/m, que representa la relación entre la
masa de la cimentación y la masa de la estructura.

En el caso de las cimentaciones superficiales no existe impedancia cruzada
Kxθ = Kθx = 0. Si se considera nulo el giro del campo incidente, ϕ̈g = 0 , se
obtienen las siguientes ecuaciones del problema para el caso de amortiguamiento
viscoso.
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üg (3.24)

donde, en este caso, ξ = 0,02, δ = 0,15 y ν = 0,45.

Del análisis de los gráficos mostrados en las Figuras 3.15 y 3.16 puede extraerse
la conclusión de que el valor del parámetro mo/m, que representa la relación entre
la masa de la cimentación y la masa de la estructura, no afecta al valor máximo
del espectro de respuesta. Del mismo modo, se observa que dicho parámetro sólo
afecta al espectro de respuesta para valores de la relación p/ω, que representa el
cociente entre la frecuencia natural de vibración del sistema y la frecuencia de
exitación, inferiores a 0,5.
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3.5. Estudio de la frecuencia natural y el factor

de amortiguamiento del sistema

En este apartado se estudia la influencia del parámetro σ, que representa la
rigidez relativa entre la estructura y el suelo, en la variación de la frecuencia
de resonancia del sistema, aśı como en la magnitud de la respuesta máxima del
mismo.

La frecuencia de resonancia del sistema puede expresarse por el ratio ω/p. Por
otra parte, la magnitud de la respuesta máxima del sistema puede asociarse a
el ratio de amortiguamiento ξ̃ de un oscilador equivalente de un solo grado de
libertad.

Se ha reemplazado el sistema objeto de estudio (Figura 2.2) por un sistema
de un grado de libertad oscilador. En adelante, la frecuencia circular natural del
sistema estará denotada por p̃ = 2πf̃ , y la fracción de amortiguamiento cŕıtico
asociada denotado por ξ̃.

El sistema de un grado de libertad de reemplazo corresponde al modelo f́ısico
que se muestra en la Figura 3.17. En esta representación, el resorte conectado
a la base representa la flexibilidad de la cimentación, el resorte conectado a la
masa representa la flexibilidad de la estructura y el amortiguador simula el amor-
tiguamiento general del sistema.

Si w(t) representa la deformación del oscilador de reemplazo, esta deformación
debe estar repartida entre los dos resortes de forma inversamente proporcional a
sus rigideces respectivas. Dado que la rigidez del resorte asociado a la estructura
es proporcional a f 2, mientras que la rigidez total del oscilador es proporcional a
f̃ 2, se deduce que la deformación de la estructura, u(t), está relacionada con la

Figura 3.17: Sistema de un grado de libertad que reemplaza al sistema objeto de
estudio. [3]
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deformación total, w(t), por la ecuación

u(t) =

(

f̃

f

)2

w(t) (3.25)

Los valores de f̃/f y ξ̃ del oscilador de reemplazo se han representado en las
Figuras 3.19 y 3.20 en función de σ para tres valores distintos de h/r. Los valores
de los parámetros restantes se han definido en apartados anteriores.
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3.5.1. Procedimiento de cálculo

Se ha utilizado un procedimiento iterativo que busca el máximo del espectro
armónico para distintos valores de σ. El algoritmo que rige este procedimiento
iterativo parte de un valor de σ = σmin, siendo σmin próximo a cero, este caso
correspondeŕıa con el supuesto de estructuras muy ŕıgidas o suelos poco ŕıgidos.
Para σ = σmin el algoritmo comienza asumiendo f̃ = f y por tanto p/ω = 1 y se
calculan, resolviendo el sistema de ecuaciones (2.56), los valores de la respuesta
para p/ω(i) −∆(p/ω), p/ω(i) y p/ω(i) +∆(p/ω), siendo ∆(p/ω)→ 0,9. Dado que
se sabe que estas curvas son suaves, el punto de búsqueda se mueve en la dirección
de valor creciente de la respuesta, hasta que alcanza un máximo. En este punto,
el algoritmo aumenta la precisión de la búsqueda haciendo ∆(p/ω) → 0 y repite
el procedimiento descrito hasta alcanzar el valor del máximo. En este momento el
valor de p/ω(i) correspondiente es almacenado como la frecuencia de resonancia f̃
del sistema para este valor de σ. A continuación, a medida que el valor de σ crece
hasta σ = σmax, se repite el proceso iterativo, esta vez empezando en el último
valor computado de p/ω.

El ratio de amortiguamiento equivalente ξ̃ se calcula para cada punto, una
vez que se ha obtenido el valor de f̃/f . Si el mecanismo de amortiguamiento
del oscilador de un solo grado de libertad equivalente se considera de naturaleza
viscosa, se demuestra que la relación entre el máximo valor de la respuesta Qm y
el ratio de amortiguamiento es [25]

ξ̃2 =
1

2

(

1−

√

Q2
m − 1

Q2
m

)

(3.26)

Esta expresión se obtiene a partir de la ecuación de movimiento de un oscilador
equivalente como el que se muestra en la Figura 3.18 que es la siguiente

[−ω2m+ iωc+ k]ũ = −müg (3.27)

Figura 3.18: Oscilador equivalente. [3]
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Algorithm 3.1 Pseudocódigo para el cálculo de f̃/f = f(σ) and ξ̃ = g(σ)

INPUT: Conjunto de parámetros que definen el sistema: h/r, γ, ξ, mo/m,
impedancias dinámicas de la cimentación; y parámetros del algoritmo σmin,
σmax, ∆σ, ∆p/ω(1) y ∆p/ω(2).
∆p/ω(1) ← 0,1
∆p/ω(2) ← 0,01
for σ(i) = σmin to σmax, in steps of ∆σ do
for j = 1 to j = 2,in steps of 1 do
compute propiedades estructurales correspondientes
if σ(i) = σmin and j = 1 then
p/ω(i) ← 1

else if σ(i) 6= σmin and j = 1 then
p/ω(i) ← p/ω(i−1)

else
p/ω(i) ← p/ω(i)

end if
Q

(i)
1 = Q(p/ω(i) −∆p/ω(j))

Q
(i)
2 = Q(p/ω(i))

Q
(i)
3 = Q(p/ω(i) +∆p/ω(j))

do
if Q

(i)
3 > Q

(i)
2 then

p/ω(i) ← p/ω(i) +∆p/ω(j)

Q
(i)
1 ← Q

(i)
2

Q
(i)
2 ← Q

(i)
3

Q
(i)
3 = Q(p/ω(i))

else if Q
(i)
1 > Q

(i)
2 then

p/ω(i) ← p/ω(i) −∆p/ω(j)

Q
(i)
3 ← Q

(i)
2

Q
(i)
2 ← Q

(i)
1

Q
(i)
1 = Q(p/ω(i))

end if
while (Q

(i)
1 > Q

(i)
2 ).OR.(Q

(i)
3 > Q

(i)
2 )

compute (f̃/f (i) and ξ̃
end for

end for
OUTPUT: σ(i), (f̃/f (i), ξ̃(i)
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3.5.2. Resultados
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Figura 3.19: Comparación entre los resultados obtenidos con el modelo propuesto
y los que figuran en el art́ıculo de Veletsos & Meek [3]

3.5.3. Conclusiones

Del análisis de las Figuras 3.19 y 3.20 se pueden extraer las siguientes conclu-
siones:

1. El ratio de frecuencia f̃/f ≤ 1, y disminuye para valores decrecientes de σ
y para valores crecientes de h/r.

2. El valor del amortiguamiento ξ̃ puede ser mayor o menor que el valor aplica-
ble a una estructura en base ŕıgida dependiendo principalmente del cociente
h/r. La interacción suelo-estructura disminuye el amortiguamiento aparente
de las estructuras esbeltas y aumenta el de las estructuras no esbeltas. Estos
cambios son especialmente significativos para sistemas con valores pequeños
de σ.
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Figura 3.20: Comparación entre los resultados obtenidos con el modelo propuesto
y los que figuran en el art́ıculo de Veletsos & Meek [3]

3. Para valores de σ mayores de 20, aproximadamente, los valores de f̃ y ξ̃ son
prácticamente iguales a aquellos de los sistemas en base ŕıgida; del mismo
modo, el efecto de la interacción es despreciable en este caso.

3.6. Conclusiones

En este caṕıtulo se ha validado el modelo simple de interacción suelo-estructura,
basado en la metodoloǵıa de subestructuración, propuesto en el caṕıtulo 2. Ha-
ciendo uso de dicho modelo se han logrado reproducir los resultados obtenidos por
Veletsos & Meek [3] para cimentaciones supeficiales, tanto en lo referente a los es-
pectros de respuesta del sistema aśı como en cuanto a la cuantificación del efecto
de la interacción suelo-estructura sobre variables de la estructura tales como su
frecuencia natural y su amortiguamiento.

Por otra parte, se ha analizado la sensibilidad de la respuesta al tipo de amor-
tiguamiento de la estructura, viscoso o histerético, comprobándose que apenas se
aprecian diferencias en el espectro de respuesta entre ambos casos.
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Asimismo, se ha realizado un estudio de la influencia sobre la respuesta del
parámetro mo/m, que representa la relación entre la masa de la cimentación y la
masa de la estructura, con el objetivo de contrastar la validez de la simplificación
que adoptan muchos autores al despreciar la masa de la cimentación superficial en
los cálculos. Los resultados de este análisis muestran que el parámetro mo/m no
afecta al valor máximo del espectro de respuesta. Del mismo modo, se observa que
dicho parámetro sólo afecta al espectro de respuesta para valores de la relación
p/ω, que representa el cociente entre la frecuencia natural de vibración del sistema
y la frecuencia de exitación, inferiores a 0,5.



Caṕıtulo 4

Aplicación del modelo a la
obtención de la respuesta śısmica
de estructuras de edificación
pilotadas

4.1. Introducción

Este apartado recoge los estudios realizados para cimentaciones pilotadas. La
cimentación, que hasta el momento se hab́ıa idealizado como una placa ŕıgida
y ćırcular, se idealizará en adelante como una placa ŕıgida cuadrada. Por otra
parte, el amortiguamiento del material de la estructura se ha considerado de tipo
histerético.

En la sección 4.2 se explica cómo se han obtenido las funciones de impedan-
cia dinámica del suelo y se muestra la representación gráfica de las mismas. El
conjunto de parámetros adimensionales elegidos para definir los sistemas objeto
de estudio se enumeran en la sección 4.3. Posteriormente, se presenta el modelo
de subestructuración para estructuras de edificación pilotadas en la sección 4.4.
Los espectros de respuesta dinámica del sistema, obtenidos con dicho modelo, se
presentan en la sección 4.5. Por otra parte, en la sección 4.6, se presentan los
resultados de los análisis paramétricos efectuados.
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4.2. Funciones de impedancia dinámica del suelo

4.2.1. Metodoloǵıa

Los valores de las funciones de impedancia dinámica del suelo se han obtenido
utilizando el código que resultó de la implementación de un modelo que ya hab́ıa
sido desarrollado en el seno de la División de Mecánica de Medios Continuos y
Estructuras del Instituto Universitario de Sistemas Inteligentes y Aplicaciones
Numéricas en Ingenieŕıa.

Se trata de un modelo acoplado de Elementos de Contorno y Elementos Fini-
tos (MEC-MEF) tridimensional armónico que aprovecha las ventajas de cada
metodoloǵıa para el análisis dinámico directo de estructuras de edificación ci-
mentadas mediante pilotes.

Este modelo cuenta con las ventajas del Método de Elementos de Contorno
para representar el terreno donde se asienta la edificación, es decir, su carácter
de medio semi-infinito aśı como la presencia de ondas śısmicas excitadoras, y la
simplificación que supone modelar vigas, pilares y pilotes de la estructura como
barras mediante el MEF. Este programa, muy desarrollado en la actualidad, ha
permitido el análisis de la respuesta de cimentaciones pilotadas, tanto en impedan-
cias como en interacción cinemática [18–20], aśı como el estudio de la respuesta de
la superestructura y de otras estructuras cercanas, sometido el conjunto a trenes
de ondas śısmicas con incidencia vertical [21, 22].

4.2.2. Parámetros adimensionales

En todos los casos los pilotes están empotrados en un semiespacio homogéneo,
isotrópico y viscoelástico. Las propiedades del sistema [26] son:

1. Coeficiente de amortiguamiento interno del suelo ξs = 0,05

2. Ratio de densidad suelo-pilote ρs
ρp

= 0,7

3. Ratio de aspecto de los pilotes L/d = 15

donde L y d son la longitud y el diametro de los pilotes respestivamente.

4. Coeficiente de Poisson del suelo νs = 0,4

5. Ratio del módulo de elasticidad pilote-suelo

Suelo ŕıgido Ep

Es
= 102

Suelo blando Ep

Es
= 103
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Figura 4.1: Definición del problema

6. Relación entre la separación entre los centros de los pilotes y el diámetro de
los mismos s

d
= 2, 5, 10

7. Frecuencia adimensional

ao =
ωb

Cs

=
b

d

ωd

Cs

(4.1)

4.2.3. Elección del rango de frecuencias

La elección del rango de valores de la frecuencia adimensional ao, para el que
se obtienen los valores de las impedancias del suelo, viene determinada por la
relación entre los parámetros h/b, p/ω y σ expresada de la siguiente manera

ao =
2π

σ

b

h

ω

p
(4.2)

Las impedancias del suelo se emplean para obtener los espectros de respuesta
para valores del ratio de esbeltez h/b de 1, 2 y 5. En ellos se representa la respuesta
del sistema para valores de p/ω entre 0,5 y 10.

Posteriormente, se estudia la influencia del parámetro σ, que representa la
rigidez relativa entre la estructura y el suelo, en la variación de la frecuencia
de resonancia del sistema, aśı como en la magnitud de la respuesta máxima del
mismo. Dicho análisis se realiza para valores del parámetro σ entre 2,5 y 100.

De este modo, se determina que será preciso obtener valores de las impedancias
del suelo dentro de un rango de ao entre 0,01 y 5,03 aproximadamente.
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4.2.4. Criterio de normalización

Las funciones de impedancia dinámica del suelo se representan normalizadas
de la siguiente manera

K̃xx =
K̂xx

µb
=

8

2− ν
(kxx + iaocxx) (4.3)

K̃zz =
K̂zz

µb
=

8

2− ν
(kzz + iaoczz) (4.4)

K̃θθ =
K̂θθ

µb3
=

8

3(1− ν)
(kθθ + iaocθθ) (4.5)

K̃xθ =
K̂xθ

µb2
(4.6)

La expresión del semiancho de la cimentación b depende de cada caso:

1. Pilote simple: b = d

2. Grupo de pilotes 2× 2: b = 3s
2

3. Grupo de pilotes 3× 3: b = 2s

4. Grupo de pilotes 4× 4: b = 5s
2

Figura 4.2: Distribución geométrica de los pilotes en grupos de 2 × 2 , 3 × 3 y
4× 4



Funciones de impedancia dinámica del suelo 61

4.2.5. Limitaciones de la malla

La malla de la que se dispone es válida para valores de la frecuencia adimen-
sional 0 < a′o < 1 expresada de la forma más común

a′o =
ωd

Cs

(4.7)

donde d es el diámetro de los pilotes.
Sin embargo, en este trabajo se ha empleado la frecuencia adimensional ao

expresada en función del semiancho del encepado b.

ao =
ωb

Cs

=
b

d

ωb

Cs

(4.8)

Por este motivo, ha sido necesario estudiar los valores de ao para los que la
malla es apta.

1. Pilote único → b = d → ao = a′o → 0 < ao < 1

2. Grupo de 2× 2 pilotes → b = 3s/2

a) s/d = 2 → ao = 3 · a′o → 0 < ao < 3

b) s/d = 5 → ao = 7,5 · a′o → 0 < ao < 7,5

c) s/d = 10 → ao = 15 · a′o → 0 < ao < 15

3. Grupo de 3× 3 pilotes → b = 2s

a) s/d = 2 → ao = 4 · a′o → 0 < ao < 4

b) s/d = 5 → ao = 10 · a′o → 0 < ao < 10

c) s/d = 10 → ao = 20 · a′o → 0 < ao < 20

4. Grupo de 4× 4 pilotes → b = 5s/2

a) s/d = 2 → ao = 5 · a′o → 0 < ao < 5

b) s/d = 5 → ao = 12,5 · a′o → 0 < ao < 12,5

c) s/d = 10 → ao = 25 · a′o → 0 < ao < 25

Dado que el rango de frecuencia adimensional ao que se desea estudiar es
0,01 < ao < 5,03, la malla es apta para los siguientes casos:

1. Grupo de 2× 2 pilotes para s/d = 5, 10

2. Grupo de 3× 3 pilotes para s/d = 5, 10

3. Grupo de 4× 4 pilotes para s/d = 2, 5, 10
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4.2.6. Representación gráfica

En este apartado se muestra la respresentación gráfica de las funciones de
impedancia dinámica horizontal, vertical, de cabeceo y cruzadas de grupos de pi-
lotes de 2× 2, 3× 3 y 4× 4.
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Figura 4.3: Impedancias de un grupo de 2× 2 pilotes en suelo flexible (Ep/Es =
103). s/d = 5
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Figura 4.4: Impedancias de un grupo de 2× 2 pilotes en suelo flexible (Ep/Es =
103). s/d = 10
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Figura 4.5: Impedancias de un grupo de 2× 2 pilotes en suelo ŕıgido (Ep/Es =
102). s/d = 5
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Figura 4.6: Impedancias de un grupo de 2× 2 pilotes en suelo ŕıgido (Ep/Es =
102). s/d = 10
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Figura 4.7: Impedancias de un grupo de 3× 3 pilotes en suelo flexible (Ep/Es =
103). s/d = 10
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Figura 4.8: Impedancias de un grupo de 3× 3 pilotes en suelo ŕıgido (Ep/Es =
102). s/d = 10
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Figura 4.9: Impedancias de un grupo de 4× 4 pilotes en suelo flexible (Ep/Es =
103). s/d = 10
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Figura 4.10: Impedancias de un grupo de 4×4 pilotes en suelo ŕıgido (Ep/Es =
102). s/d = 10



70 Aplicación del modelo a estructuras de edificación pilotadas

4.3. Parámetros adimensionales del problema

La respuesta del sistema cimiento-estructura depende de las propiedades del
cimiento y del suelo, las propiedades de la estructura y de las caracteŕısticas
de la excitación. Los efectos de estos factores pueden expresarse en términos de
parámetros adimensionales [3].

1. Parámetro de onda (wave parameter), que mide la rigidez relativa suelo-
estructura.

σ =
Cs

f · h
= 3, 5,∞ (4.9)

donde:

Cs es la velocidad propagación de la onda S en el suelo.

Cs =

√

µ

ρ
(4.10)

f es frecuencia natural en Hz de la estructura sobre base ŕıgida.

f =
1

T
=

p

2π
(4.11)

donde p es la frecuencia natural en rad/s de la estructura sobre base
ŕıgida.

2. Ratio de esbeltez (slenderness ratio) h/b = 1, 2, 5 mide la relación entre la
altura de la estructura y el semiancho del cimiento.

3. Densidad de masa relativa entre la estructura y el suelo.

δ =
m

4ρb2h
= 0,15 (4.12)

donde:

ρ es la densidad del suelo.

4. Ratio de masa cimiento-estructura mo
m

= 0.

5. Coeficiente de amortiguamiento de la estructura en base ŕıgida ξ = 0,02.

6. Coeficiente de Poisson del suelo ν = 0,4.

7. Frecuencia de exitación ω.
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Figura 4.11: Modelo de subestructuración de una estructura de una planta

4.4. Modelo de subestructuración

Considerando amortiguamiento viscoso para el material de la estructura se
obtiene

K = k + iωC = k + 2mpξωi (4.13)

Por otra parte, las expresiones de las impedancias del suelo son

K̂xx = ke
xx · (kxx + iaocxx) = Kxx + iaoCxx (4.14)

K̂θθ = ke
θθ · (kθθ + iaoCθθ) = Kθθ + iaoCθθ (4.15)

K̂xθ = K̂θx = −ke
xx · (kxθ + iaoCxθ) = Kxθ + iaoCxθ (4.16)
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donde las impedancias estáticas, ke
xx y ke

θθ, tienen las siguientes expresiones

ke
xx =

8µb

2− ν
(4.17)

ke
θθ =

8µb3

3(1− ν)
(4.18)

y la frecuencia adimensional se expresa como

ao =
ωb

Cs

=
2π

σ

ω

p

b

h
(4.19)

Introduciendo las expresiones de la rigidez de la estructura y de las impedancias
del suelo en la ecuación (2.14) se obtiene
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Sumando las ecuaciones primera y segunda del sistema matricial, la segunda
ecuación representará el equilibrio horizontal del conjunto, aśı



Modelo de subestructuración 73









k 0 0

0 Kxx Kxθ

0 Kθx Kθθ

















ũ
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Considerando la siguiente expresión para la rigidez de la estructura sin amor-
tiguamiento

k = p2 ·m (4.22)

la ecuación matricial queda
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Sacando como factor común la masa de la estructura m a ambos lados de la
igualdad y sumando las matrices del primer término de la igualdad, se obtiene
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Sacando como factor común ω2/p2 del primer término de la igualdad se llega
a la siguiente expresión
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Diviendo entre h la última fila de la ecuación y la última columna de la matriz
del sistema, la expresión queda
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üg −









h

h

h+ Io+I
mh









ϕ̈g (4.26)



Modelo de subestructuración 75

La inercia a giro de la cimentación se expresa como

Io =
mob

2

3
(4.27)

Por otra parte, la inercia a giro de la estructura tiene la siguiente expresión

I =
mb2

3
(4.28)

Sustituyendo las expresiones (4.27) y (4.28) en el sistema de ecuaciones (4.26)
queda
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A continuación se adimensionalizan los términos de la matriz del sistema
(ec.4.29) donde aparecen las expresiones de las impedancias, aśı el término (2,2)
queda
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m
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sustituyendo en la ecuación (4.30):
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Procediendo de forma análoga con el término (3,3) de la matriz del sistema
(ec.4.29) se tiene
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Sustituyendo la expresión de la velocidad de propagación en el suelo Cs (ec.4.10)
en las ecuaciones (4.32) y (4.35), respectivamente, se obtiene:
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Despejando ρ de la ecuación (4.12) se obtiene:

ρ =
m

4δb2h
(4.38)
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Sustituyendo esta expresión en las ecuaciones (4.36) y (4.37) se obtiene
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Despejando Cs de la ecuación (4.9) y sustituyendo f por su expresión (ec. 4.11)
se obtiene

Cs = σ
p

2π
h (4.41)

Sustituyendo esta expresión en las ecuaciones (4.39) y (4.40) queda
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Sustituyendo las expresiones obtenidas, (ec.4.42) y (ec.4.43), en la ecuación del
sistema (4.29) en los términos (2,2) y (3,3) respectivamente, la ecuación matricial
queda:
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p2uc
r

p2hϕc
r









= −









1

1 + mo

m

1








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Analizando los términos de la matriz donde aparecen las impedancias cruzadas
se obtiene:
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Sustituyendo las expresiones (4.45) y (4.46) en la ecuación (4.44):
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Lo que es igual que
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En el caso de que el amortiguamiento del material de la estructura fuese de
tipo histerético,

K = k(1 + 2ξi) (4.49)

y el sistema de ecuaciones del problema quedaŕıa
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p2uc
r

p2hϕc
r









= −









1

1 + mo

m

1








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4.5. Espectros de respuesta del sistema
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Figura 4.12: Espectro de respuesta para una cimentación con un grupo de 2× 2
pilotes. Ep/Es = 103, s/d = 5, h/b = 1, 2, 5
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Figura 4.13: Espectro de respuesta para una cimentación con un grupo de 2× 2
pilotes. Ep/Es = 103, s/d = 10, h/b = 1, 2, 5
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Figura 4.14: Espectro de respuesta para una cimentación con un grupo de 2× 2
pilotes. Ep/Es = 102, s/d = 5, h/b = 1, 2, 5
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Figura 4.15: Espectro de respuesta para una cimentación con un grupo de 2× 2
pilotes. Ep/Es = 102, s/d = 10, h/b = 1, 2, 5



84 Aplicación del modelo a estructuras de edificación pilotadas

10
−2

10
−1

10
0

10
1

10
2

10
0

h/b=1

p/ω

|p
2 u/

ü g|

10
−2

10
−1

10
0

10
1

10
2

10
0

h/b=2

p/ω

|p
2 u/

ü g|

10
−2

10
−1

10
0

10
1

10
2

10
0

h/b=5

p/ω

|p
2 u/

ü g|

σ = 3 σ = 5 σ = ∞

Figura 4.16: Espectro de respuesta para una cimentación con un grupo de 3× 3
pilotes. Ep/Es = 103, s/d = 2, h/b = 1, 2, 5
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Figura 4.17: Espectro de respuesta para una cimentación con un grupo de 3× 3
pilotes. Ep/Es = 103, s/d = 5, h/b = 1, 2, 5
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Figura 4.18: Espectro de respuesta para una cimentación con un grupo de 3× 3
pilotes. Ep/Es = 103, s/d = 10, h/b = 1, 2, 5
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Figura 4.19: Espectro de respuesta para una cimentación con un grupo de 3× 3
pilotes. Ep/Es = 102, s/d = 2, h/b = 1, 2, 5
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Figura 4.20: Espectro de respuesta para una cimentación con un grupo de 3× 3
pilotes. Ep/Es = 102, s/d = 5, h/b = 1, 2, 5
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Figura 4.21: Espectro de respuesta para una cimentación con un grupo de 3× 3
pilotes. Ep/Es = 102, s/d = 10, h/b = 1, 2, 5
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Figura 4.22: Espectro de respuesta para una cimentación con un grupo de 4× 4
pilotes. Ep/Es = 103, s/d = 2, h/b = 1, 2, 5
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Figura 4.23: Espectro de respuesta para una cimentación con un grupo de 4× 4
pilotes. Ep/Es = 103, s/d = 5, h/b = 1, 2, 5
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Figura 4.24: Espectro de respuesta para una cimentación con un grupo de 4× 4
pilotes. Ep/Es = 103, s/d = 10, h/b = 1, 2, 5
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Figura 4.25: Espectro de respuesta para una cimentación con un grupo de 4× 4
pilotes. Ep/Es = 102, s/d = 2, h/b = 1, 2, 5
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Figura 4.26: Espectro de respuesta para una cimentación con un grupo de 4× 4
pilotes. Ep/Es = 102, s/d = 5, h/b = 1, 2, 5
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Figura 4.27: Espectro de respuesta para una cimentación con un grupo de 4× 4
pilotes. Ep/Es = 102, s/d = 10, h/b = 1, 2, 5
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4.6. Estudio de la frecuencia natural y el factor

de amortiguamiento del sistema

En este apartado se estudia la influencia del parámetro σ, que representa la
rigidez relativa entre la estructura y el suelo, en la variación de la frecuencia
de resonancia del sistema, aśı como en la magnitud de la respuesta máxima del
mismo.

La frecuencia de resonancia del sistema puede expresarse por el ratio ω/p. Por
otra parte, la magnitud de la respuesta máxima del sistema puede asociarse a
el ratio de amortiguamiento ξ̃ de un oscilador equivalente de un solo grado de
libertad.

Se ha reemplazado el sistema objeto de estudio (Figura 2.2) por un sistema
de un grado de libertad oscilador. En adelante, la frecuencia circular natural del
sistema estará denotada por p̃ = 2πf̃ , y la fracción de amortiguamiento cŕıtico
asociada denotado por ξ̃.

Si el mecanismo de amortiguamiento del oscilador de un solo grado de libertad
equivalente se considera de naturaleza histerética, se demuestra que la relación
entre el máximo valor de la respuesta Qm y el ratio de amortiguamiento es

ξ̃ =
1

2Qm

(4.51)

Esta expresión se obtiene partiendo de la ecuación de movimiento del oscilador
equivalente

[k(1 + 2ξi)− ω2m]ũ = −müg (4.52)

Las Figuras de la 4.28 a la 4.43 muestran la evolución de estos parámetros
para los casos de cimentaciones pilotadas de 2 × 2, 3 × 3 y 4 × 4 pilotes, en
dos tipos distintos de suelo Ep/Es = 102, 103, con tres valores diferentes de la
distancia entre pilotes, s/d = 2, 5, 10, y para valores del ratio de esbeltez h/b =
1, 2, 5. La representación gráfica de estos resultados se presenta superpuesta con la
representación gráfica de los resultados obtenidos para una cimentación superficial
de forma circular inscrita en la base cuadrada de la cimentación pilotada.

En estas curvas se observa como, al contrario de lo que seŕıa esperable, el
sistema con cimentación pilotada parece ser menos ŕıgido que el sistema con ci-
mentación superficial. Esto se debe a que las funciones de impedancia dinámi-
ca han sido calculadas con un modelo que no considera el contacto entre la ci-
mentación y el suelo, únicamente modela el contacto en la interfaz suelo-pilote.
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Figura 4.28: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 2× 2 pilotes. Ep/Es = 103, s/d = 5, h/b = 1, 2, 5
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Figura 4.29: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 2× 2 pilotes. Ep/Es = 103, s/d = 10, h/b = 1, 2, 5
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Figura 4.30: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 2× 2 pilotes. Ep/Es = 102, s/d = 5, h/b = 1, 2, 5
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Figura 4.31: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 2× 2 pilotes. Ep/Es = 102, s/d = 10, h/b = 1, 2, 5
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Figura 4.32: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 3× 3 pilotes. Ep/Es = 103, s/d = 2, h/b = 1, 2, 5
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Figura 4.33: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 3× 3 pilotes. Ep/Es = 103, s/d = 5, h/b = 1, 2, 5
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Figura 4.34: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 3× 3 pilotes. Ep/Es = 103, s/d = 10, h/b = 1, 2, 5
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Figura 4.35: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 3× 3 pilotes. Ep/Es = 102, s/d = 2, h/b = 1, 2, 5
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Figura 4.36: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 3× 3 pilotes. Ep/Es = 102, s/d = 5, h/b = 1, 2, 5



106 Aplicación del modelo a estructuras de edificación pilotadas

10 100
0.1

1

σ

F
re

cu
en

ci
a 

N
at

ur
al

10 100

0.01

0.1

σ

ξ

h/b=1 (C.Pilotada)
h/b=2 (C.Pilotada)
h/b=5 (C.Pilotada)
h/b=1 (C.Superficial)
h/b=2 (C.Superficial)
h/b=5 (C.Superficial)

Figura 4.37: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 3× 3 pilotes. Ep/Es = 102, s/d = 10, h/b = 1, 2, 5
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Figura 4.38: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 4× 4 pilotes. Ep/Es = 103, s/d = 2, h/b = 1, 2, 5
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Figura 4.39: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 4× 4 pilotes. Ep/Es = 103, s/d = 5, h/b = 1, 2, 5
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Figura 4.40: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 4× 4 pilotes. Ep/Es = 103, s/d = 10, h/b = 1, 2, 5
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Figura 4.41: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 4× 4 pilotes. Ep/Es = 102, s/d = 2, h/b = 1, 2, 5
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Figura 4.42: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 4× 4 pilotes. Ep/Es = 102, s/d = 5, h/b = 1, 2, 5



112 Aplicación del modelo a estructuras de edificación pilotadas

10 100
0.1

1

σ

F
re

cu
en

ci
a 

N
at

ur
al

10 100

0.01

0.1

σ

ξ

h/b=1 (C.Pilotada)
h/b=2 (C.Pilotada)
h/b=5 (C.Pilotada)
h/b=1 (C.Superficial)
h/b=2 (C.Superficial)
h/b=5 (C.Superficial)

Figura 4.43: Frecuencia natural f̃/f y factor de amortiguamiento ξ para una
cimentación con un grupo de 4× 4 pilotes. Ep/Es = 102, s/d = 10, h/b = 1, 2, 5
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Las Figuras de la 4.44 a la 4.49 muestran la influencia del número de pilotes
sobre los parámetros f̃/f y ξ̃. En ellas se observa, como era previsible, que el
aumento del número de pilotes hace que aumente la rigidez del sistema.
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Figura 4.44: Influencia del número de pilotes en la frecuencia natural f̃/f y el
factor de amortiguamiento ξ. Ep/Es = 103, s/d = 2, h/b = 1, 2, 5
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Figura 4.45: Influencia del número de pilotes en la frecuencia natural f̃/f y el
factor de amortiguamiento ξ. Ep/Es = 103, s/d = 5, h/b = 1, 2, 5
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Figura 4.46: Influencia del número de pilotes en la frecuencia natural f̃/f y el
factor de amortiguamiento ξ. Ep/Es = 103, s/d = 10, h/b = 1, 2, 5
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Figura 4.47: Influencia del número de pilotes en la frecuencia natural f̃/f y el
factor de amortiguamiento ξ. Ep/Es = 102, s/d = 2, h/b = 1, 2, 3
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Figura 4.48: Influencia del número de pilotes en la frecuencia natural f̃/f y el
factor de amortiguamiento ξ. Ep/Es = 102, s/d = 5, h/b = 1, 2, 5
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Figura 4.49: Influencia del número de pilotes en la frecuencia natural f̃/f y el
factor de amortiguamiento ξ. Ep/Es = 102, s/d = 10, h/b = 1, 2, 5
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Las Figuras de la 4.50 a la 4.55 muestran la influencia de la separación entre
pilotes sobre los parámetros f̃/f y ξ̃. En una observación preliminar de los gráficos,
parece que al aumentar la distancia entre los pilotes, disminuye la rigidez del
conjunto. Sin embargo, por tratarse de resultados de carácter adimensional, la
interpretación de los mismos debe tener en cuenta la influencia de la variación del
parámetro s/d sobre el resto de parámetros adimensionales del problema. Cabe
destacar que en las gráficas mostradas, el conjunto con mayor separación entre
pilotes se asienta en un suelo más flexible.
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Figura 4.50: Influencia de la separación entre pilotes de un grupo de 2 × 2
en la frecuencia natural f̃/f y el factor de amortiguamiento ξ. Ep/Es = 103,
h/b = 1, 2, 5
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Figura 4.51: Influencia de la separación entre pilotes de un grupo de 3 × 3
en la frecuencia natural f̃/f y el factor de amortiguamiento ξ. Ep/Es = 103,
h/b = 1, 2, 5
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Figura 4.52: Influencia de la separación entre pilotes de un grupo de 4 × 4
en la frecuencia natural f̃/f y el factor de amortiguamiento ξ. Ep/Es = 103,
h/b = 1, 2, 5
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Figura 4.53: Influencia de la separación entre pilotes de un grupo de 2 × 2
en la frecuencia natural f̃/f y el factor de amortiguamiento ξ. Ep/Es = 102,
h/b = 1, 2, 5
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Figura 4.54: Influencia de la separación entre pilotes de un grupo de 3 × 3
en la frecuencia natural f̃/f y el factor de amortiguamiento ξ. Ep/Es = 102,
h/b = 1, 2, 5
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Figura 4.55: Influencia de la separación entre pilotes de un grupo de 4 × 4
en la frecuencia natural f̃/f y el factor de amortiguamiento ξ. Ep/Es = 102,
h/b = 1, 2, 5





Caṕıtulo 5

Revisión, conclusiones y
desarrollos futuros

5.1. Revisión

Se ha desarrollado un modelo simple de interacción suelo-estructura en el do-
minio de la frecuencia, que permite evaluar la influencia de estos factores en la
respuesta de estructuras de edificación frente a cargas de origen śısmico. Se tra-
ta de un modelo basado en la metodoloǵıa de subestructuración, lo cual permite
realizar un mayor número estudios paramétricos debido a su menor coste com-
putacional en comparación con los modelos directos.

En este modelo las impedancias y los factores de interacción cinemática sólo
vaŕıan con la configuración geométrica de la cimentación, la diposición de los pi-
lotes, el número de pilotes y la separación entre los mismos. Sin embargo, en el caso
de los modelos directos, las impedancias y los factores de interacción cinemática
dependen también de otros parámetros como el parámetro de onda σ y esto hace
que tengan que ser computadas un mayor número de veces para la realización de
análisis paramétricos.

En este modelo, la estructura se considera un sistema discreto con un número
finito de grados de libertad, el conjunto terreno-cimentación se representa a través
de resortes y amortiguadores equivalentes cuyas propiedades dependen de la fre-
cuencia de excitación y, por último, la solicitación (onda śısmica) a través de sus
efectos (desplazamiento y giro) en la base de la estructura. El modelo permite
cuantificar el efecto de la interacción sobre variables de la estructura tales como
su frecuencia natural, esfuerzos y amortiguamiento.

Haciendo uso de dicho modelo se han logrado reproducir los resultados obtenidos
por Veletsos & Meek [3] para cimentaciones supeficiales, tanto en lo referente a los
espectros de respuesta del sistema aśı como en cuanto a la cuantificación del efecto
de la interacción suelo-estructura sobre variables de la estructura tales como su



128 Revisión, conclusiones y desarrollos futuros

frecuencia natural y su amortiguamiento.

Por otra parte, se ha analizado la sensibilidad de la respuesta al tipo de amor-
tiguamiento de la estructura, viscoso o histerético, comprobándose que apenas se
aprecian diferencias en el espectro de respuesta entre ambos casos.

Asimismo, se ha realizado un estudio de la influencia sobre la respuesta del
parámetro mo/m, que representa la relación entre la masa de la cimentación y la
masa de la estructura, con el objetivo de contrastar la validez de la simplificación
que adoptan muchos autores al despreciar la masa de la cimentación superficial en
los cálculos. Los resultados de este análisis muestran que el parámetro mo/m no
afecta al valor máximo del espectro de respuesta. Del mismo modo, se observa que
dicho parámetro sólo afecta al espectro de respuesta para valores de la relación
p/ω, que representa el cociente entre la frecuencia natural de vibración del sistema
y la frecuencia de exitación, inferiores a 0,5.

Una vez validado el modelo, se ha aplicado a estructuras de edificación pi-
lotadas con cimentaciones de grupo de 2×2, 3×3 y 4×4, obteniéndose los espec-
tros de respuesta dinámica del sistema. Para ello se han obtenido los valores de
las funciones de impedancia dinámica haciendo uso de un modelo acoplado de El-
ementos de Contorno y Elementos Finitos (MEC-MEF) tridimensional armónico
que hab́ıa sido desarrollado previamente en el seno de la División de Mecánica
de Medios Continuos y Estructuras del Instituto Universitario de Sistemas In-
teligentes y Aplicaciones Numéricas en Ingenieŕıa. Por otra parte, se presentan los
resultados de los análisis paramétricos efectuados, en los que se estudia la influ-
encia del parámetro σ, que representa la rigidez relativa entre la estructura y el
suelo, en la variación de la frecuencia de resonancia del sistema, aśı como en la
magnitud de la respuesta máxima del mismo.

5.2. Conclusiones

Los fenómenos de interacción suelo-estructura condicionan significativamente
la respuesta del sistema. Se han obtenido valores de la frecuencia y el amor-
tiguamiento incorporando dicha interacción y se observa que existen diferencias
notables con los resultados que consideran la estructura cimentada sobre una base
infinitamente ŕıgida.

Estos parámetros de interacción suelo-estructura son más determinantes en el
caso de cimentaciones pilotadas que en los casos de cimentaciones superficiales
o cimentaciones embebidas y dependen significativamente de la configuración de
la cimentación, el número de pilotes, la separación entre pilotes y la disposición
geométrica de los mismos.

Los resultados obtenidos tienen un carácter adimensional y por tanto la in-
terpretación f́ısica de los mismos requiere de un especial cuidado y precisa de
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un tratamiento espećıfico de los datos, contemplando la influencia que todos los
parámetros adimensionales tienen sobre los resultados del problema.

5.3. Desarrollos futuros

El modelo de subestructuración, propuesto en este Trabajo Fin de Máster,
para el análisis dinámico de estructuras de edificación permite desarrollar una
serie de análisis, entre los que pueden destacarse:

Obtención de resultados para otros casos no estudiados en el presente traba-
jo, lo cual permitiŕıa disponer de un conjunto de casos lo más generalizado
posible en el que se incluyeran cimentaciones con un elevado número de
pilotes.

Estudio del rango de validez del modelo de subestructuración propuesto en
comparación con el modelo directo que ya ha sido desarrollado previamiente
en el seno de la División de Mecánica de Medios Continuos y Estructuras del
Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en
Ingenieŕıa.

Realización de un estudio pormenorizado de la influencia de las impedancias
cruzadas en la respuesta dinámica del sistema.

Obtención de espectros de respuesta máxima teniendo en cuenta los fenómenos
de interacción suelo-estructura.

Análisis de la influencia en la respuesta del sistema del contacto del encepado
con el terreno, en el caso de cimentaciones embebidas, aśı como del grado
de enterramiento del mismo.

Desarrollo de un protocolo para obtener la respuesta dinámica del sistema
de manera anaĺıtica.

Obtención de la respuesta del sistema incorporando los factores de inter-
acción cinemática y análisis de la influencia de estos sobre la misma. En
los art́ıculos estudiados, la influencia de la interacción cinemática sobre el
periodo es poco significativa. Sin embargo, se observa cierta influencia sobre
el amortiguamiento del sistema.

Realizar un estudio comparativo del comportamiento dinámico de un en-
cepado con la geometŕıa de cajón embebido frente a un encepado idéntico
al que se le añadan pilotes.
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Incluir en el modelo directo la condición de contacto directo del encepado
con el suelo.
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[6] Maeso, O., Aznárez, J. J., and Domı́nguez, J. (2004) Three-dimensional mod-
els of reservoir sediment and effects on the seismic response of arch dams.
Earthquake Eng Struct Dyn, 33, 1103–1123.
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